
THE LESLlE MODEL 

with 

HARVESTING 

Richard A. Hinrichsen 

" 

. 
" 

A paper submitted to the 

Department of Mathematical Sciences ... 
of Clemson University 


in partiaJ fulfillment of the 


requirements for the degree of· 


Master of Scenes 

MathematicaJ Sciences 

July 1987 

Approved :\-~f*io/~=~_~=-:If.~~=;.....;;..;;;.___o Major Advisor 



Introduction. 

One of the simplest population growth models assumes that a population 

P is closed (no immigration or emmigration is allowed) and that each individual in 

P is identical with respect to survival rates and reproduction rates. 

This model provides a good approximation when growth is gauged over a small 

interval of time and P is made up of single cell organisms which reproduce by 

dividing [11]. The model provides a poor approximation to a population's growth 

in general since populations consist of individuals with varying survival and 

reproduction rates. One model which was constructed in an attempt to remedy 

this problem is the Leslie matrix model. With the Leslie model, a population P is 

divided into age groups of equal time length called cohorts, where the 

reproduction and survival rates are allowed to vary between cohorts but not 

within a cohort. Furthermore, only the female portion of P is considered, although 

the same mathematical arguments would apply if both males and females were 

present and that ratio of males to females remained constant within each cohort 

[11]. This model, introduced by Lewis [10] and Leslie [9], is a discrete time model 

with a discrete age scale. The Leslie model has been applied to many different 

populations, one of which is the Hooded Seal of the North Atlantic Ocean. By 

using the Leslie model, Filpse and Veling were able to point out that hunting 

pressure in the years 1975 - 1979 was equal to or slightly greater than the 

Hooded Seal population could tolerate [5]. 

This paper covers several topics paramount to the proper maintenance of 

a closed population subject to harvesting. Section 0.0 introduces the Leslie 

model. states the Perron - Frobenius Theorem as it applies to the Leslie matrix 1 

exposes some of the basic properties of the Leslie matrix, and then describes the 
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0.0 

long range behavior of a population when its corresponding Leslie matrix is 

Primitive. Section 1.0 develops the Leslie model with harvesting, and 

demonstrates some basic connections between the dynamics of a population 

whose growth is governed by a Leslie model without harvesting, and the 

dynamics of the same population with harvesting. These first two sections are 

subordinate to section 2.0 where all reachable and holdable population states 

are determined for a given Leslie matrix Land intial population. The climax of 

the paper occurs in section 3.0, where the idea of an optimal harvesting scheme 

is presented, and it is shown how an optimal harvesting scheme can be found 

with the methods of linear programming. 

Mathematical formulation and basic results. 

We partition Pinto m age classes P1,P2, ••. ,Pm where Pi' i=1 ,2, ... , m 

consists of individuals in P of age i-1 to i time units. Each individual in Pi has a 

probability Sj of reaching Pj+1 after 1 time unit and a birthrate of bj. Now let Xj(t) 

t=0,1,2, . .. represent the number of individuals in Pj at time t. Peilou has 

demonstrated that the dynamics of P can be captured by considering the first n 

age classes where P n is the oldest age class with a nonzero birthrate [11]. 

Therefore we will assume m=n. The growth of P is then governed by following 

difference equations: 

x1(t+1) =! xk(t)bk 
k-1 

i = 2, 3, ... , n . 
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The above difference equations may be written as: 

x(t+1) =Lx(t) t = 0,1 ,2, ... 

b
1 

b
2 

.•• b n _1 
b 

n 

S1 0 ... 0 0 

o S2 ••• 0 0 

o 0 

We call L £ Mn(9t) a Leslie matrix, and x(t) the population vector at time t. L is of 

course nonnegative with the following restrictions: 

i) bj ~ 0, i = 1 ,2, ... ,n-1 bn > 0 


ii) Sj >0, i =1 ,2, ... ,n-1. 


We now present a list of some basic properties enjoyed by the Leslie matrix L [6]. 

0.1 a Property: Irreducibility. The Leslie matrix is irreducible. 

0.1 b Property. Characteristic polynomial. The characteristic polynomial 

the Leslie matrix is given by 

:: 0.1c Property: Nonsingularity. The Leslie matrix is nonsingular. 
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0.1d Property: Let x, y e Mn•1(9\) with x ~ 0, y ~ 0 and x ~ y. Then 

Lx ~ Ly. 

Proof: Let x , y be as given. Then x = y + y' for some y' e M •1(9\), and thus n 

Lx =L(y + y') =Ly + Ly' ~ Ly since Ly' ~o. 0 

The most important result pertaining to the Leslie matrix is an application 

of the Perron - Frobenius theorem. The theorem applies to any nonegative 

irreducible matrix and thus it applies to the Leslie matrix [6], (7]. 

0.2 	 Theorem: Let L e Mn(9\) be an irreducible Leslie matrix. Then 

i) p(L) is a simple eigenvalue of L. 

ii) 	 The eigenvector associated with p(L) can be chosen to have 

positive components only. 

p(L) is refered to as the Perron root of L, and eo e M •1(9\) , eo > 0 such that n

Leo = p(L)eo is called a Perron eigenvector of L. 

In practice, it is important to know the behavior of x(t) as t tends to infinity. 

This long range behavior will of course depend on the matrix L. If L is a primitive 

matrix ( L is irreducible and pel) is a strictly dominant eigenvalue of L) , then the 

following theorem applies [7]. 

0.3 	 Theorem: If L e Mn(9\) is a primitive Leslie matrix, then 

Limt~ x(t) / p(L)t - eozTx(O) , where Leo =p(L)eo, LTz =p(L)z. and eoTz =1.QCI 
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Since the long range behavior of x(t) is easy to determine when L is primitive, it 

would be advantageous to have a theorem which characterizes primitive Leslie 

matrices. Theorem 0.4 provides such a characterization [11]. 

0.4 	 Theorem: Let L £ Mn(9t) be a Leslie matrix. Then L is primitive if and 

only if ged (N) = 1 where N = { k I bk =- 0, k = 1,2, ... ,n}. 

Thus in order to check the primitivity of L we need only calculate the 

greatest common divisor of the set of all subscripts corresponding to nonzero 

birthrates. It has been observed that populations whose growth is governed by 

nonprimitive Leslie matrices are rare [11]. 

1.0 The Leslie Model with Harvesting 

In this section we investigate the population dynamiCS of a population P 

subject to harvesting, where the harvesting of P is carried out in the manner 

described by Beddington and Taylor [1]. We assume that in the absence of 

harvesting I the growth of P is governed by a leslie matrix L £ Mn(9t). Let x(O) be 

the initial population vector. A certain fraction of each age group in the initial 

population is to be harvested. Let hj(O) be the fraction of xj(O) harvested. Then 

the vector representing the remaining population is given by: 

(I - Dh(O») x(O) 
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The growth of this remaining population is governed by the Leslie model so that 

x(1) = L(r - Dh(O}) x(O) . 

We continue this harvesting procedure to obtain population vectors x(2), x(3), ... 

where 

x(t+1) = L(r - Dh(t}) x(t) t =0,1,2, . .. , 

h(t) £ M (9\) is the age specific harvest vector at time t, and n•1 

Dh(t} = diag( h1 (t), h2(t), ... ,hn(t)). Naturally, there is the restriction 

o ~ hi(t) ~ 1 i =1,2, ... ,n . 

Here are some important results comparing L with L( r - Dh), where h £ Mn•1(9\) 

and 0 ~ h ~ 1. These results will be used extensively throughout the remainder 

this paper. 

1.1 Result: 

Proof: 

1.2 	 Result: Let A,B £ Mn (9\) •A ~ 0 and B ~ 0 with A ~ B, then 

p(A) ~ p(B). 

A proof of Result 1.2 can be found in Horn and Johnson [7]. 
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1.2 a Result: p(L) ~ p(L( I- Dh)). With equality if and only if Dh = O. 

Proof: By Result 1.1 and 1.2, p(L) ~ p(L( I- Dh)). Obviously if Dh = 0, then 

equality holds. Now assume that p(L) =: p(L( I- Dh)). By Property 0.1 b, the 

characteristic polynomials of Land L( 1- Dh) are f(A) = An - b1 A
n-1 - S1b2An.2 - ... 

1-s1s2· .. sn_2bn_1A1. s1s2 ... sn_1bnand g(A)=An -(1-h1) b1An- - (1-h1) (1-h2) 

S1 b2An.2 - ... - (1-h1) (1-h2)··· (1-hn) S1 S2' .. sn-2 sn_1 bn respectively. Let 0: = 
p{L) = p(L( I- Dh)). Then f(o:) =g(o:) =0, so that 

o:n-f(o:) = o:n_g(o:). Suppose that h1 > O. Then b1 An-1 ~ (1-h1) b1 An-1 , ... , 

S1 s2' .. sn_2bn_1 A1 ~ (1-h1) (1-h2)··· (1-hn_1) S1 s2' .. sn-2 bn-1,and 

s1s2 ... sn-1 bn> (1-h1) (1-h2)··· (1-hn) S1 S2 ... sn_1' bn so that o:n-f(o:) < o:n_g(o:), a 

contradiction. Similar contradictions arise when hi > 0 for i = 2,..• ,no 

Hence h = O. 0 

1.3 Result: x(t) S Ltx(O) for all t £ N. 

Proof: The proof is by induction on t. Let :8 = { t £ N I x(t) S Ltx(O)}. If 

t =0, then x(O) =L°x(O) so that 0 £:8. Now suppose that k £:8. Then 

x(k+1) = L( 1- Dh(k») x(k) S L( 1- Dh(k») Lkx(O) = Lk+1X(0) - LDh(k)Lkx(O) S 

Lk+1x(O) since LDh(k)L kX(O) ~ O. Therefore k+ 1 £:8, and by the principle of 

mathematical induction, x(t) S Lt x(O) for all t £ N . 0 

The long range behavior of a population whose growth is governed by the 

Leslie model with harvesting is more difficult to determine than when there is no 

harvesting. The flexibility in the choice of harvest vectors h(O), h(1), h(2) ... 

allows for many possibilities. However, in the case where p (L) < 1, the 

asymptotic behavior is easily determined [7]. 
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1.4 Theorem: Let A e Mn(9t). Then lim t__ At =0 if and only if p(A) < 1. 


1.5 Result: If p(L) < 1, then lim t__ x(t) =O. 


Proof: By result 1.3, x(t) S Ltx(O) for all teN. and by Theorem 1.4, 


lim t__ Ltx(O) = 0, so that lim t__ x(t) =O. ¢ 


This result demonstrates that a population with p(L) < 1 is doomed. Most likely, a 

wildlife manager would avoid any harvesting of such a population and would 

initiate some management techniques to increase the birthrates or survival rates. 

2.0 ReachabiJity and Holdability 

Wildlife managers are faced with the problem of controlling a population P 

to a desirable size and distribution. If P is so large that it is depleting the natural 

resources of its habitat, then some action must be taken to bring the size of P to a 

safe level. Suppose that m e Mn.1(9t) is known to be a desirable population 

vector for P. We seek a harvesting scheme such that x(k) =m for some 

k e P, where x(O) is specified. If such a harvesting scheme exists, we say that m is 

reachable. A manager may further insist that x(k+ 1) = m so that Preaches m and 

can be held at m. If such a harvesting scheme exists, we say that m is holdable. 

The aim of this section is to determine the set of reachable vectors and the set of 

holdable vectors for a given Leslie matrix L and initial population vector x(O). 

In the upcoming definitions and results, L is assumed to be an irreducible 

Leslie matrix, x(t) represents the population vector at time t, h(t) is the vector of 

age specific harvest rates at time t, Dh(t) = diag( h1(t) , h2(t), ... , hn(t) ), p(L) is the 
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Perron eigenvalue of L, and ro is a Perron eigenvector of L. Furthermore, 

assume that x(O) :;: 0, so that Ltx(O) :;: 0 for t = 0, 1, 2, . .. . 

2.1 	 Definition: A nonnegative vector m e M •1(9\) is called (L, x(O))n

reachable in k steps if there exists a finite sequence of vectors 

8 ={h(O), h(1), ... ,h(k-1)} h(t) e Mn.1(9\) , 0 ~ h(t) ~ 1 

t = 0,1, ... ,k-1 

such that x(t+ 1) =L(I - Dh(t)} x(t) and x(k} =m. 

2.2 Definition: If m e M •1(9\) is (L, x(O)) reachable in k steps for some n


k e P, then m is called (L, x(O)) reachable. 


2.3 	 Definition : A nonnegative vector m e Mn.1(9\) is said to be (L, x(O)) 

hold able in k steps if m is (L, x(O)) reachable in k steps and there is an 

h(k) e Mn•1(9\) with 0 ~ h(k) ~1, such that x(k+ 1) =L( I - Dh(k)} x(k) =x(k) 

and x(k) =m. 

2.4 	 Definition: If me Mn.1(9\) is ( L, x(O) ) holdable in k steps for some 

k e P, then m is called (L, x(O)) holdable. 

Armed with these definitions and the elementary results presented earlier, 

we are prepared to describe (L , x(O)) holdable sets and (L, x(O)) reachable sets. 

In the case where L is primitive, Theorem 2.8 gives a straightforward 

characterizatio.n of all (L, x(O)) reachable vectors where p(L) > 1 and Theorem 

2.10 gives a characterization of all (L, x(O)) holdable vectors where p(L) > 1. 
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These two theorems are the most important since a wildlife manager would most 

likely not harvest a population whose corresponding Leslie matrix has p(L) ~ 1. 

2.5 	 Lemma: If m e Mn.1(9t) is (L, x(O)) reachable in k steps, then 

Proof: Assume that m is (L, x(O)) reachable in k steps, and let x(k-1) = x, 

h =1 - h(k-1). Then m =L Dh X so that 

m1= b1h1x1+ b2h2x2 + ... + bnhnxn equation 1 

and m2 = S1 h1X1 

equations 2 

mn = sn-1 hn-1 xn-1 

Substituting equations 2 into equation 1 we obtain 

n-1 b. 

= I ....!. mi+1 + bnhnxn.m1 . 1 S. ,- I 

2.6 	 Lemma: Let m e Mn•1(9t) m ~ 0, and let L be a primitive Leslie 

Matrix. If p(L) >1, then there exists J e P such that Li x(O} ~ m for all j e P 

with j ~ J. 
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Proof: By Theorem 0.3, Lim t~oo Ltx(O) / p(L)t = rozTx(O) where ro, z e Mn.1(9\) 

ro> 0, z > 0 , Lro= p(L)Ol and LTz = p(L)z. Assume that p(L) > 1, then 

Limt~oo Ltx(O) = Umt~oo p(L)trozTx(O) = 00, Hence for any me Mn.1(9\) with m> 0, 

there exists a J e P such that Ux(O) ~ m for all j e P with j ~ J. 0 

2.7 	 Theorem: m e Mn.1(9\) is (L, x(O)) reachable in j+1 steps if and only if 

the following two conditions hold: 

. 0-1 b. 
i) I S m1 S I + bnx where x =L!x(O). and I = L....!. ",+1n 

i.l S. 
ii) mS ~+\(O) . 

Proof: Suppose that m e Mn,1(9\) is reachable in j+1 steps. By Lemma 2.5 

condition i) must hold. If condition ii) does not hold, then there exists an 

T T . 1i e {1 ,2,... ,n} such that ej m > ej LJ+ x(O). However, by Result 1.3, 

xU+1) S Lj+l x(O) which implies that ejTxU+1) S ejTU+1x(0) < ejTm so that m is not 

(L, x(O)) reachable in j+1 steps. 

Now suppose that conditions i) and ii) hold and let 8 = { h(O), h(1), ... ,h(j)} 

where h(O) = h(1) = ... = hU-1) =0 and h =1 - hU) is defined by 

hi = 1 if Xi =0 and i =1,2, ... ,n 

= mi+1/sjxj if Xi > 0 and i = 1 ,2, . , , , n-1 

= (m1 - I)/bnxn if xn > 0 and i = n 

where x = [Xl x2 ••• xn]T = xU). and 

n-l b.

I=L _I mi+l' 
. 1 S.
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It is easily verified that the above choice for h{j) gives m =L(r - Dh(j)) x(j) = x(j+1). 

We next demonstrate that 0 s; h(j) S; 1. It is clear by that by the choice of h, that 

h{j) S;1 , and if xi{J) = 0, then him = 0 for i = 1, 2, ... , n. If xi(j) > 0 and eiTh(j) < 0, for 

i £ {1,2,..., n-1}, then the precedi ng equation te lis us that ei+ / m = 

ei+1T(L - LDhm)x(j) = ej+1TLx(j) - hisjxi(j) ~ ej+1T Lx(j) = ei+1T U x(O), which is a 

contradition to condition ii. If enThO) < 0 and xn(j) > 0, then (m1 - 1:) > bnxn ' 

which contradicts condition i . Hence m is (L, x(O)) reachable in j+ 1 steps. 0 

Theorem 2.7 not only gives us sufficient and necessary conditions for 

m £ Mn, 1 (9t) to be a reachable vector, but the proof of the theorem has 

demonstrated a harvesting scheme which controls the population to m in j+ 1 

steps (in the case where m is reachable in j+ 1 steps). The harvesting scheme 

consists of leaving the population unharvested at times 0 , 1, ' , "j-1 , then 

harvesting the population at time j so that m = x(j+ 1). 

2.8 	 Theorem: Assume that L is primitive. If p(L) > 1, then m £ Mn,1(9t) is 

reachable if and only if 

Proof: Assume that p(L) > 1, and let 1: S; m1. Then by Lemma 2.6 there exists 

J £ N such that m s; U+1x(O) for any j £ N with j ~ J. Also, by Lemma 2.6 there 

exists J' £ N s\Jch that [0, 0, ... , (m1-1:)/bn1T s; Ux(O) for all j £ N with j ~ J'. 

Let J and J' be as given above and let j ~ max{J,J'}. Then m S; U+1x(0) and 

enT[ 0,0, ... , (m1 -1:)/bn1T S; en
T U x(O). Consequently, by Theorem 2.7, m is 
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( l, x(O) ) reachable. If m E Mn.1(9t) is reachable then by condition i of Theorem 

2.7, L S; m1• <> 

2.9 	 Lemma: If m E Mn.1(9t), m > 0 is ( l, x(O) ) reachable, then m is 

(l, x(O)) holdable if and only if the following two conditions hold : 

i) m S lm 

Proof: Assume that m is ( l, x(O) ) reachable. We need only demonstrate that 

m is (l, m ) reachable in 1 step if and only if the above two conditions hold. By 

Theorem 2.7, m is (l, m) reachable in 1 step if and only if L S; m1 S; L + bnenTm 

and m S; lm. These are precisely the two conditions found above. <> 

2.10 	 Theorem: Assume that l is primitive, and let pel) > 1. Then 

m E Mn.1(9t) , m > 0 is ( l, x(O) ) holdable if and only if conditions i and ii of 

lemma 2.9 hold. 

Proof: If m is ( L, x(O) ) holdable then by Lemma 2.9, conditions i and ii must 

hold. Assume now that pel) > 1 and conditions i and ii hold. Then by Theorem 

2.8, m is ( l, x{O) ) reachable, and thus by lemma 2.9, m is (l, x(O)) holdable. <> 

We next turn our attention to the less important case where pel) S; 1. 

2.11 	 Theorem : If pel) < 1, then 0 is the only (l, x(O)) holdable population 

vector. 
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Proof: let pel) < 1 and let m e Mn.1(9\) be a holdable vector. Then there 

exists he Mn.1(9\) ,0 S; h S;1 such that m = LeI - Dh)m. This implies that either 

m = 0, or m is an eigenvector of LeI - Dh) with corresponding eigenvalue of 1. 

However by Result 1.2, 1 > pel) ~ p( LeI - Dh»which makes an eigenvalue of 1 

impossible for LeI - Dh). Hence m = 0 is the only possible holdable population 

vector. If we let h(O) = 1 , then we see that m = 0 is holdable in 1 step. 0 

2.12 "rheorem : If pel) = 1 and me Mn,1(9\) is ( l, x(O) ) holdable, then m = coo 

where c e 9\, and c ~ O. 

Proof: Suppose pel} = 1 and that m is (l , x(O) } holdable. Then there exists 

h e Mn.1(9\) ,os; h S; 0 such that m = l(I - Dh)m. This implies that either m = 0 or m 

is an eigenvector of LeI - Dh) with corresponding eigenvalue 1. If m = 0, then m = 

oeo. If m ¢ 0, then by result 1.2a, 1 =pel} ~ p(l(I - Dh)} =1 which implies that 

Dh = O. Hence m is a Perron eigenvector of l so that m = ceo for some c e 9\ with 

c ~ O. 0 

A population P is said to bestable if the percentage of the population in 

each age group is constant over time. In the case that P'S growth is governed by 

a leslie model without harvesting, the population is stable at time t if and only if 

x(t+ 1) = Lx(t) = cx(t} for some c e:lt , c ~ O. If such a c exists and x{t} ~ 0, then it 

can be shown that c = pel) and Lx{t) = p{l)x{t) [6]. Notice that the growth of P in 

a stable state is completely determined by pel). When pel) ~ 1 and P is stable, 

then P is increasing in each of its age groups. When pel) s; 1 and P is stable, 

then P is decreasing in each of its age groups. We next characterize all vectors 

x e M ,1(9\), x> 0 such that Lx ~ x, and all vectors ye Mn,1(9\), y> 0 such that n
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lysy. 

2.13 	 Definition: let x e Mn.1(9l) , x ~ 0, x:;ll:(). x is called an L - increasing 

vector if lx ~ x. If Lx S x, then x is called L - decreasing. The set of all 

l - increasing vectors is denoted by 'L(l), and the set of all 

l - decreasing vectors is denoted by n(l). 

2.14 	 Result: let l have Perron root pel) and Perron eigenvector 0). If 

pel) S1, then 0) e n(l). If pel) ~ 1, then 0) e 'L(l). 

2.15 	 Theorem: let x e Mn.1(9l), x ~ O. (i) If Lx> ax for some a e 9l with 

a > 0, then pel) > a. Also, (ii) if Lx < ax, then pel) < a. 

Proof: Assume that x e Mn.1(9l), x ~ 0 and Lx > ax for some a e 9l. Then there 

exists z e Mn•1(9l), z > 1 such that lx = DzaLx. This implies that a = p( Dz-ll). 

Now by similarity, p( Dz-IL) = p( Dz D - 1l Dz·1) = pel Oz·1). Notice that lOz·1 S l z 

so that by Result 1.2a, pel Dz·1) s pel) with equality only if Oz·1 = 1. Note that 

Dz·1 < I, so that pel Dz·1) < p(l). Therefore pel) > a. 

Next assume that x is as given and lx < ax for some a e 9l. Then there 

exists z e Mn.1(9l), z > 1 such that ax = DzLx. This implies that 0.= p( Dzl), By 

similarity p( Ozl)= p{ Dz-1 Dz l Oz)= p( l Dz). By Result 1.2 p( l Dz) ~ p( l), and 

using an argument similar to that used Result 1.2a, equality holds if and only if 

Oz=1. Note that Dz > I so that pel) < a. 0 
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2.16 Coronary: (i) If p(L) > 1, then :IJ(L) = $. (ii) If p(L) < 1, then t(L) =$. 

(iii) If p(L) =1 I then :IJ(L) =t(L) = { x e Mn,1 (9t)1 x = coo ,ce 9t c > 0 }. 

Proof: Let x e M ,1(9t) ,x ~ O.. If x e :IJ(L) and Lx < x, then by theorem 2.15 (i),n

p(L) < 1. If x.e :IJ(L) and Lx = x I then p(L) =1. Thus by the contrapositive, (i) holds. 

SimilarlyI (ii) follows from theorem 2.15 (ii) and the fact that if Lx = x, then p(L) = 1. 

Finally, if p(L) = 1 and Lx= x, then by the Perron Frobenius theorem, M 

there exists 00 > 0 such that X= coo so that em e :IJ(L) and coo e t(L) for some c e 9t, 

c > O. Theorem 2.15 disallows the possibilities (a) p(L) = 1 and Lx> x, and 

( b) p(L) =1 and Lx < x. Therefore :IJ(L} = t(L) = {x e M ,1(9t) I x= coo, c e 9tn


c> O}. ¢ 


2.17 Theorem: Let x e Mn 1(9t) , X ~ 0, X:F- O. Then x e t(L) if and only if there , 

exists J3 e Mn,1(9t) ,0 < J3 S 1 such that DpLx = x, and J3j = 1 whenever 

Xj=O. 

Proof: First assume that x e t(L) so that Lx ~ x. This gives rise to the following 

inequalities: 

n

L bjxj ~ x1 and SjXj ~ ~+1 i = 1,2,3, ... , n-1. 
i .. 1 

Therefore, there exists c e Mn 1(9t) , c ~ 1 such that , 

n

L bi~ = C1x1 and ~xi =G+1Xi+1 i = 1,2, ..., n-1. 
j...1 

Let c j = 1 whenever xi = O.These equations can be written as Lx = D~. Let 

Dp = D ·1 so th~t DpLx = x ,0 < J3 S 1 and J3i = 1 whenever xi = O.o
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Now suppose that ~ E Mn.1(~) ,0 < ~ ~ 1 and D~Lx = x. Then Lx = D~-1x, 

where D~-1 ~ I so that D~-1x ~ x which implies that Lx ~ x. 0 

The next theorem is a sister theorem to Theorem 2.17. Its proof is constructed 

using the same methods used in Theorem 2.17. 

2.1 8 Theorem : Let x E Mn.1(~) , x ~ 0, x -:I;: O. Then x E D(L) if and only if 

there exists ~ E Mn.1(~) with ~ ~ 1 such that D~Lx = x, and ~i = 1 

whenever xi = O. 

2.19 	 Lemma: If x E Mn.1(~), x ~ 0, X-:l;: 0 is such that x E t(L), then Ltx Et(L) 

for all tEN. 

Proof: The argument is made by induction. Let V = { tEN I Ltx Et(L) where 

X E t(L)}. 0 E V since it is assumed that x E t(L). Suppose now that k E t(L).By 

Theorem 2.17, there exists ~ E Mn.1(~) , 0 < ~ ~ 1 such that D~L(Lkx) = L kx. 

Therefore L(Lk+1 x) = L(D~-lLkx) =L((D~-l- I + I)Lkx) = L((D~-l - I)Lkx + Lkx) = 
L(D~-1 - I)Lkx + Lk+1x ~ Lk+1X since L(D~-1 - I)Lkx ~ o. Hence k +1 EV and by 

mathematical induction, Ltx Et(L) for all tEN. 0 

2.20 	 Lemma: If x E Mn.1(~), X~ 0, x -:I;: 0 is such that x E D(L), then Ltx E D(L) 

for all tEN. 

The proof of Lemma 2.20 is analogous to the proof of Lemma 2.19 and is 

omitted. The two results tell us that in the absence of harvesting, once a 

population begins to increase (decrease) over time in each age group, it 
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continues to do so. 

Often times it is important to know the minimum amount of time that it 

takes for a population subject to harvesting to be controlled to a specified 

population vector m. This is especially true when the cost of having the 

population away from a desirable population is high. 

2.21 	 Definition: Let m £ Mn.1(9t) be ( L, x(O) ) reachable. X(L, x(O) , m) = 
min { k £ P I m is ( L , x(O) ) reachable in k steps }. 

2.22 	 Theorem: Assume that x(O) £ t(L), x(O) > 0 and m £ Mn.1(9t) is 

(L, x(O)) reachable, then m is (L , x(O)) reachable in k steps for any 

k £ P with k ~ X(L, x(O), m). 

Proof: Let m £ Mn.1(9t) be (L, x(O)) reachable. Then by Theorem 2.7, 

1: ~ m1 ~ bne TLx-1 x(O) + 1:n 

n-1 b. 
where 1: = L...!. mk-1 and X=X(L,x(O),m). 

i-1 S. 

Since x(O) £ t(L) , Theorem 2.19 tells us that Ltx(O) £ t(L) for all t £ N. Therefore, 

m ~ LX x(O) ~ LX + 1 x(O) ~ LX +2X(0) ~ . .. ,and m1 ~ bne TLx-1 x(O) + 1: ~ n 

bnenTLX x(O) + 1: ~ .... Thus by Theorem 2.7, m is (L, x(O)) reachable in k steps 

for each k £ P with k ~ X. 0 

2.23 	 "rheorem: Assume that x(O) £ n(L), x(O) > 0 and that m £ Mn,1(9t) is 

( L, x(QJ ) reachable in k steps. Then m is ( L, x(O) ) reachable in j +1 

steps, where j £ { 0, 1, ... , k-2}. 
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Proof: Since m is assumed to be ( L, x(O) ) reachable in k steps, by Theorem 

2.7, 

T k-1
i) 1: + bnen L x(O) ~ m1 ~1: and ii) 

k 
m S; L x(O), 

where 
n-1 b. 

1:= L...! m. 1 
. 1 S. 1+. 
1 1 

Furthermore, by Lemma 2.20, m S; Lkx(O) S; Lk-1 x(0) S; ... S; L1 X(0) S; x(O), and 

m1 S; b e TLk-1 X(0) +1:S; b e TLk-2x(0) +1:S;, .. S;bnenTLox(O) +1:. Thereforen n n n 

conditions i and ii of Theorem 2.7 are satisfied for j =0,1, ..., k-2. 0 

It follows from Theorem 2.23 that X(L,x(O),m) =1 in the case that 

x(O) e D(L) and m is ( L, x(O) ) reachable. In general, it is more difficult to 

determine X(L,x(O),m). One way to determine X(L, x(O), m} is by use of Theorem 

2.7. If m is ( L, x(O)} reachable, then by Theorem 2.7, X(L,x(O},m} = 

min{keP I Lkx(O)~m,and (m1-1:)/bnS;enTLk-1x(0)}. This indicates that 

X(L,x(O),m) can be determined by evaluating Lkx(O) at k = 1,2,3, ... , and finding 

the smallest such k such that L kx(O) ~ m. It would be nice to have a method for 

determining X(L,x(O),m) that does not require raising L to powers. The following 

is a special case where X(L,x(O),m) is easily determined without raising L to 

powers. 

2.24 	 Result: Assume that m is (L,x(O)) reachable. If x(O) =co, and 

m =ceo for some c e 9t, c ~, then X(L,x(O),m) =min{ k e P I p(L)k ~ c 

and ( m1 - 1: )/bnS; p(L)k-1 con }. 

Proof: By Theorem 2.7, X(L,x(O},m) =min{ k e P I Lkx(O) ~ m, and 
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( m1 - L )/bn:$;en
TLk-1 x(O)}. By the above choice of m and x(O), Lkx(O) = Lkro = 

p(L)kro. Consequently, 

LkX(O) ~ m 

¢:.) 	 p(L)kro ~ m = COl 

¢:.) p(L)k ~ c, and 

( m1- L )/bnS enTLk-1 x(O) 

¢:.) ( m1 - L )/bnS enTp(L)k-1 ro 

Therefore, { k e P I Lkx(O) ~ m and ( m1- I )/bn:$; enTLk-1 x(O) } = {k e P I p(L)k ~ c 

and ( m1 - I )/bnS p(L)k-1 ron }, and the result follows. 0 

Result 2.24 can be generalized to obtain an upper bound for X(L,x(O),m). 

Theorem 2.25 provides the generalization. 

2.25 	 Theorem: Assume that me Mn,1(9\) is (L,x(O) reachable and let 

c =max { r e 9\ I rro S x(O)}. Then X(L,x(O),m):$; min{ k e P I Cp(L)kro ~ m 

and ( m1 - I )lb :$; cp(L)k-1ro }.n n 

Proof: Since cro:$; x(O), by property O.1d, Lkx(O) ~ Lkcro = cp(L)kco. Therefore, 

if Cp(L)kro ~ m, then L kx(O) ~ m, and if ( m1 - L )/b :$; Cp(L)k-1con• then ( m1- L )/b :$;n n

Lk-1 X(O) so that V 2 ={k eP I LkX(O) ~ m and (m1- L )/b :$; Lk-1x(O)} ~ n

V 1 = { k e P ICp(L)kco ~ m and ( m1 - L )/bnS cp(L)k-1ron }. Hence X(L,x(O),m) = 

minV2 :$; minV1. 0 
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3.0 Optimal Harvesting Strategies 

In section 2.0 we characterized the set of population vectors which are 

(L,x(O)) reachable for a given Leslie matrix L and initial population vector x(O). If 

m is (L,x(O)) reachable in k steps, then there exists a nonempty set 

Ax(m) = {8 I 8 is a finite sequence of harvest vectors { h(O), h(1), ... ,h(k-1) } 

such that m is reachable through 8}. Since m is assumed reachable, Ak(m) is 

guaranteed to be nonempty. Assume that each individual in the ith age class of 

the harvested population has a value of vi when it is harvested. We then defined 

the vector v e Mn,1 (9t) by v = [ V 1 ' v2 " •• , V n ]T, which is known as the value vector 

and is assumed to be constant over time. The harvest of the initial population has 

a value of v TOh(O)x(O), and the harvest of the population at time j has a value of 

vTOh(j)XG), where j e P. From time 0 to time k-1 then, there is a total value of 

k-1 

~ v T 0h(i) x(i) 
1-0 

which we intend to maximize over the set Ax(m); this quantity is known as the k 

step yield. 

3.1 Definition: For a given finite sequence of harvest vectors 8 = { h(s), 

h(s+1), ..., h(k-1)}, 


k-1 


~ VT0h(i) x(i) = y(s,k-1 ) 
1-8 

is called the yield over the time interval [s,k-1 J . 
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The problem we have described above is known as an optimal contol 

problem with fixed endpoints [2]. The fixed endpoints are x(O) and m = x(k). 

where m is assumed to be (L,x(O)) reachable in k steps. In the language of 

control theory, {x(O), x(1), x(2), ... } is known as the trajectory, the set ~(m) is 

the set of allowable controls, and y(O, k-1) is the objective which we intend to 

maximize [2]. The problem stated in language of optimal control is as follows: 

For a given Leslie matrix L ,initial population vector x(O), and (L,x(O)) 

reachable vector m, find controls h(O), h(1), ..., h(k) such that x(k) = m, and 

y(O,k-1) is as large as possible. Furthermore, we say that 8 = { h(s), h(s+ 1), ... , 

h(k-1) } is an optimal x(s) - m (k-s)-step harvesting policy if m =x(k) and y(s,k-1) 

is at its maximum, we will denote the set of all such harvesting policies by 

As,k(m). 

Many authors have analyzed the problem of maximizing the sustainable 

yield of a population when p(L) ~ 1 [1], [4], [8], [12], [13]. In this problem, it is 

insisted that the population is harvested in such a way that the population 

distribution and size is constant. The problem consists of maximizing vTx over 

all vectors x e Mn,1(9t) such that x is (L,x) holdable in 1 step and 1Tx = 1. 

The Maximum Sustainable Yield problem can easily be posed as a 

linear program [1]. The optimal control problem with fixed endpOints described 

above can also be solved using linear programming. The following theorem is 

used to set up the constraints involved in the linear program. 

3.2 Theorem: Let m e Mn 1(9t) be (L.x(O)) reachable in k steps, and let , 

8 = {h.(O), h(1), ... , h(k-1)} with h(t) e Mn,1(9t). x(t+1) = L(r - Dh(t))x(t). 

t =O. 1•...• k-1, where hi(t) =0 when xi(t) = O. Then 8 e ~(m) if and 
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only if 

i) x(k) = m 

and ii) 0 ~ L-'x(t) S; x(t-1) t = 1,2, ...• k. 

Proof: Assume that s = { h(O), h(1), ... , h(k-1) } e~(m). Then m = x(k) 

follows immediately, and for t = 0, 1, ... ,k, L-'x(t) = (r - Dh(t_1))x(t-1) = 

x(t-1) - Dh(t-1)x(t-1) ~ x(t-1) since Dh(t_1)x(t-1) ~ 0, and L-'x(t) ~ 0 since Dh(t_,) ~ 1. 

Thus condition i) holds. 

Now assume that conditions i) and ii) hold for S. We need only show that 

o~ h(t) ~ 1. By condition i), 

o~ L-1 x(t) ~ x(t-1) 


~ 0 ~ L-1(L (r - Dh(t_1))x(t-1)) ~ x(t-1) 


~ 0 ~ (r - Dh(t_1))x(t-1)) ~ x(t-1). 


Therefore, 0 ~ el
T(r - Dh(t-, ))x(t-1) = (1 - hl(t-1 ))xj(t-1) ~ xj(t-1) for 

i =1, 2, ... ,n. If xj(t-1) > 0, then 0 ~ (1 - hj(t-1)) ~ 1, so that 0 ~ hj(t-1) ~ 1. If 

xj(t-1) =0, then by choice of S, hj(t-1) =O. Hence S = { h(O), h(1), ... , h(k-1) } e 

Ak(m). ~ 

One more result is needed to present the problem as a linear program. It 

is a result that allows us to write the yield as a function of the trajectory. 

3.3 Result: Let L, x(O), and vTbe given. If S = {h(O), h(1), ... ,h(k-1)} is a k 

step harvesting policy with corresponding trajectory T = {x(O), x(1), ... ,x(k)}, then 
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k-1 
T T ~ T -1

y(0,k-1) = V X(O) - v x(k) +	~ V (r- L ) X(t) . 
1=1 

Proof: By definition, y(0,k-1) = v T ( Dh(O)x(O) + Dh(1 )x(1) + ... + 

Dh(k_1)x(k-1)). Now x(t+1) =L(r - Dh(t»)x(t)-, so that Dh(1)x(t) =x(t) - L-1 X(t+1) for 

t = 0,1, ... ,k-1. Substituting these equations into the above expression for 

y(0,k-1), we have y(O,k-1) =vT( x(O) - L-1 x(1) + x(1) - L-1 X(2) + ... + x(k-1) - L-1 x(k) ) 

so that y(0,k-1) = vTx(O) - vTx(k) + vT( (r - L-1)X(1) + (r - L-1)x(2) + ... + 

(r-L-1)x(k-1)). 0 

In the optimization problem of interest, x(O) and x(k) are assumed fixed so 

that by the above result, y(O,k-1) is at a maximum if a.nd only if 

k-1 
vTI ( r - C1

)x(t) is at its maximum. 
1-1 

3.4 THEUNEAR PROGRAM 

Let x(O) and L be given, and let m be (L,x(O)) reachable in k steps. We are 

interested in maximizing y(O,k-1) with respect to the set of all possible trajectories 

:B = { T I There exists 8 e ~(m) which has corresponding trajectory T = { x(O), 

x(1) •... , x(k) }}. By Theorem 3.2, T e:B if and only if the two conditions of 

Theorem 3.2 are satisfied. Since m is assumed to be (L,x(O)) reachable in k 

steps,:B is certainly nonempty. Also, since:B is closed and bounded and y(O,k-1) 

is continuous over:B, y(O,k-1) takes on a maximum value over:B [2]. Since the 

constraints on T e:B are linear in T, and y(O,k-1) is linear in T, the methods of 

linear progra~ming may be applied to find an optimal T say 1'. Once a 
I 

T' ={x(O)" x(1)" ... , x{k-1 )', X(k~ is discovered, the equations 
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x(t+ 1)' =L(I - Dh(t),)x(t), t=o, 1, ... , k-1 

may be used to solve for 8' = { h(Ol', h(1l', ... , h(k)' }, letting hi(t) = 0 whenever 

xi(t) = 0 i = 1,2, ..., n. 

The following is a formal statement of the problem in the language of 

linear programming [3]. 

k·1 
"T ·1

maximize: .£.J v (I - L )x(t) , where x(t+ 1) =L(I - Dh(t»)x(t) 
t-1 

subject to: i) x(k) = m 

ii) o S;L-1x(t)Sx(t-1) t=1,2, ...,k 

Example 3.5 will demonstrate the use of linear programming and Theorem 2.7 to 

solve an optimal yield problem. 

3.5 Example: 

Let L = [ ~ 6] ,v =[~], x(O) = [ ~o]. and m =[~O] . 

a) Determine whether, or not m is (L,x(O)) reachable in 2 steps. Is m also 

(L,x(O)) holdable in 2 steps? 

b) If m is (L,x(O) ) reachable in 2 steps, determine an optimal 2 - step 

harvesting strategy. 

Solution: a) We use Theorem 2.7. Notice that I = b1mt's1 = 0 and 

TLx(O) = e2T[ 8 20]T =20 , so that IS m2 = 5 S; I + e2TLx(O) (condition (i) ofe2 
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Theorem 2.7 is satisfied). Also, L2x(0) = [20 8]T ~ [ 10 5]T = m (condition (ii) of 

Theorem 2.7 is satisfied). Hence, m is (L,x(O)) reachable in 2 steps. 

b) We proceed by solving the linear program set down in 3.4 for an 

optimal trajectory. Let x(1) = x =[x1 x2]T. 

maximize: vT( I ~ L-1)x =[1 ~1]x 

subject to : i) x(2) =m = [ 105]T 

These contraints reduce to 10 S x2 S 20, and 5 S x1 S 8. The feasible region is 

therefore a rectangle in the x1 ~ x2 plane with vertices (5,10) , (5,20) , (8,10), and 

(8,20). It is well known that the optimal solution is realized at one of these 

vertices [2]. Here is a table of values that the objective function takes on at each 

of the vertices of the rectagle: 

Vertex Objective 

(5,10) -5 

(5,20) ~15 

(8,10) -2 

(8,20) -12 
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It is aparrent that the objective function is maximized at x(1) = [8 10]T, and the 

corresponding yield by Result 3.3 equal to 21. We now use the fact that 

x(t+ 1) = L(r - Dh(t»)x{t) for t = 0, 1 and the optimal trajectory found above to obtain 

the optimal harvesting strategy 

8 - ( h'(O), h'(1) ) = ( [ g] ,m ). 
Conclusion. 

This paper has examined the problem of optimally contolling a population 

P, which is subject to harvesting and whose growth is approximated by a Leslie 

matrix, to a given Reachable size and distribution. The results exhibited will 

undoubtedly prove useful to a wildlife manager who makes use of the Leslie 

matrix model. 
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Notation 

,-
9t the real numbers 


p the positive integers 


N the natural numbers 


Mm.n{9t) m -by-n matices with entries from 9t 


Mn(9t) n -by-n matrices with entries from 9t 


p(L) the spectral radius of L e Mn(9t) 


I identity matrix in Mn(9t) 


ej ith standard basis vector in Mn.1(9t) 


AT transpose of A e Mm.n(9t) 


A-1 inverse of a nonsingular matrix A e Mn(9t) 


gcd(M.) the greatest common divisor of M., where P ~ M. 


xi the ith component of x e Mn•1(9t) (usually) 
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